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Summary
Over the last 10 years, the management of major haemorrhage in trauma patients has changed radically. This is

mainly due to the recognition that many patients who are bleeding when they come in to the emergency department

have an established coagulopathy before the haemodilution effects of fluid resuscitation. This has led to the use of

new terminology: acute traumatic coagulopathy, acute coagulopathy of trauma shock or trauma-induced coagulopa-

thy. The recognition of acute traumatic coagulopathy is important, because we now understand that its presence is a

prognostic indicator, as it is associated with poor clinical outcome. This has driven a change in clinical management,

so that the previous approach of maintaining an adequate circulating volume and oxygen carrying capacity before, as

a secondary event, dealing with coagulopathy, has changed to haemostatic resuscitation as early as possible. While

there is as yet no universally accepted assay or definition, many experts use prolongation of the prothrombin time to

indicate that there is, indeed, a coagulopathy. Hypoxia, acidosis and hypothermia and hormonal, immunological and

cytokine production, alongside consumption and blood loss, and the dilutional effects of resuscitation may occur to

varying extents depending on the type of tissue damaged, the type and extent of injury, predisposing to, or amplify-

ing, activation of coagulation, platelets, fibrinolysis. These are discussed in detail within the article.
.................................................................................................................................................................
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Introduction
Trauma remains a major cause of global morbidity

and mortality, accounting for over 10% of deaths, with

the majority due directly or indirectly to bleeding [1,

2]. Over the last 10 years, the management of major

haemorrhage in trauma patients has changed radically.

This is mainly due to the recognition that many

patients who are bleeding when they come to the

emergency department have an established coagulopa-

thy before the dilutional effects of fluid resuscitation.

Traumatic coagulopathy has been demonstrated in

patients who received little or no intravenous fluid

therapy, negating the long-held belief that iatrogenic

haemodilution is the main causative factor in trau-

matic coagulopathy [3–6]. This has led to the use of

new terminology: acute traumatic coagulopathy (ATC);

acute coagulopathy of trauma shock or trauma-

induced coagulopathy. In this review, we will use the

term ATC. The recognition of ATC is very important

because we now understand that its presence is a prog-

nostic indicator, as it is associated with poor clinical

outcome [7]. This has driven change in clinical

management, so that the previous approach of main-

taining an adequate circulating volume and oxygen

carrying capacity before, as a secondary event, dealing

with coagulopathy, has changed to haemostatic resusci-

tation as early as possible. However, the type of hae-

mostatic resuscitation varies, with the USA giving
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fresh frozen plasma, while there is a different approach

in Europe, led by Austria, where fibrinogen concen-

trates are used and supported by other factor products.

The divergence in clinical practice reflects our limited

understanding of ATC and comparisons between

approaches need to be addressed in clinical trials.

The range of bleeding injuries is wide, and one

has to question whether injuries from civilian, com-

pared with military, trauma result in similar haemo-

static changes. Military casualties commonly suffer

blast injury (primary blast wave, thermal and chemical

burns, penetrating fragment wounds, and blunt

trauma) from high-energy munitions as well as pene-

trating trauma from high velocity gunshot wounds.

The different mechanisms of injury and increased

energy transfer that occur after military trauma may

or may not result in different pathophysiological

responses when compared with a civilian after a road

traffic accident or stab wound. Understanding the

admission coagulopathy profile of a military or civilian

patient will help to inform future transfusion resuscita-

tion protocols and may help to develop potential med-

ical therapies that will be of benefit. This article

summarises the authors’ current understanding of the

pathogenesis of ATC.

Clinical definition
The concept of ATC stems from the recognition that a

prolonged prothrombin time (aPTT) and/or activated

partial thromboplastin time (PT) at hospital admission,

before resuscitation, is associated with a three to four-

fold higher mortality rate and is independently associ-

ated with increased transfusion requirements, organ

injury, sepsis and critical care length of stay [4]. In

two large observational studies, one quarter of trauma

patients had prolongation of PT and/or aPTT on

admission, which was independently associated with

bleeding and death [7]. The development of ATC

occurs as a function of the extent of tissue damage

and duration of shock.

The tests used to describe ATC have varied

between studies, and have included standard plasma-

based tests resulting in definitions based on abnormal:

aPTT; PT; thrombin time (TT); international norma-

lised ratio (INR); platelet count; fibrinogen level; dis-

seminated intravascular coagulation (DIC) score of 1–4

(non-overt DIC) or ≥ 5 (overt DIC) or abnormalities

in clotting amplitude and clot lysis in whole blood vi-

sco-elastic tests [5]. While there is as yet no universally

accepted assay or definition, many experts use prolon-

gation of the PT to indicate that there is, indeed, a

coagulopathy. Ironically, the abnormal test results that

have heightened our awareness of ATC may have

contributed to well-intentioned but physiologically

misguided therapeutic strategies.

Phases of ATC
There are different temporal phases in the evolution

of ATC. The first phase is an immediate activation of

multiple haemostatic pathways, including fibrinolysis,

in association with tissue injury. The second phase is

due to resuscitation-related factors, for example the

use of colloids and red cells will dilute haemostatic

factors; and post-resuscitation, there is an acute phase

response leading to a prothrombotic state, predispos-

ing to later venous thromboembolism. In some

patients, especially if resuscitated late or inadequately

so that there is continuing tissue hypoxia, DIC may

ensue.

Immediate effects of tissue injury
The following may occur to varying extent depending

on the type of tissue damaged, the type and extent of

injury, predisposing to, or amplifying, ATC:

(1) Consumption and loss. Coagulation factors and

platelets are consumed during the formation of

extravascular clots and thrombus (thrombus is a

clot formed within a vessel wall), as well as exter-

nal loss from the intravascular compartment dur-

ing bleeding. A reduction in circulating red cells

has a major effect on primary haemostasis through

reduction in axial blood flow. Red cells usually

flow through the centre of an artery or arteriole,

and platelets and plasma are pushed to the vessel

wall, so that when a vessel is severed the necessary

haemostatic factors are close by; this is disrupted

once the haematocrit falls below about 30% [8],

such that there is an inverse correlation between

the haematocrit and in vitro bleeding time [9].

(2) Dilution. The reversal of Starling forces and con-

sequent shifts of interstitial fluid into the vascular
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compartment results in autodilution of haemo-

static factors. This is aggravated by replacement

of lost whole blood with crystalloid, colloid and

red cell transfusion. Even so-called balanced

transfusion strategies, such as 1:1:1, that attempt

to deliver the functionality of whole blood with

red cells, plasma and platelets in equal ratios,

deliver a dilute final product due to the presence

of anticoagulants and red cell additive solutions.

The final 1:1:1 product has a haematocrit of 29%,

a platelet count of about 80 9 109.l�1 and coagu-

lation factors diluted to 65% of normal. Ulti-

mately, the resultant dilutional coagulopathy is

proportional to the volume of fluid administered,

both in vitro and in vivo [10, 11].

(3) Hormonal and cytokine changes follow tissue

injury. The levels of cytokines and hormones such

as epinephrine and vasopressin rise, hormone and

thrombin production leads to endothelial cell acti-

vation (ECA). Tissue plasminogen activator (t-PA)

and Weibel–Palade body contents are released

from the endothelium after stimulation by vaso-

pressin. Weibel–Palade bodies anneal with the

endothelial wall releasing von Willebrand factor

and exposing P-selectin present on their inner wall,

onto the surface of the endothelial cell, enhancing

platelet recruitment. Cytokines, such as TNF and

IL-1 as well as thrombin and continued hypoxia,

cause ECA and lead to a slow change in endothelial

cell phenotype from antithrombotic to prothrom-

botic which, in inadequately resuscitated patients,

leads to DIC. Endothelial cell activation down-reg-

ulates thrombomodulin and fibrinolysis, (PAI-1

levels increase) causing cleavage of glycosamino-

glycans and sloughing of the glycocalyx from the

cell surface, limiting activation of antithrombin;

increases in platelet activating factor production

increase endothelial permeability and, in vitro, up-

regulates the expression of tissue factor [12, 13].

(4) Hypoxia, acidosis and hypothermia. This triad

predisposes to bleeding by impairing the function

of platelets and coagulation proteases while

increasing fibrinolysis [14]. Hypoxia exacerbates

ECA, and coagulopathic changes are most pro-

nounced once the pH is < 7.1 [15] and core tem-

perature is < 33 °C [16].

(5) Immune activation. Tissue damage and shock are

associated with platelet release of soluble CD40-

ligand, a potent immune activator that itself can

cause further ECA and platelet activation, and is

known to be necessary in order to stabilise thrombi

[29]. Immune stimulation, including complement

activation, is associated with release of damage-

associated molecular patterns (DAMPs), such as

mitochondrial DAMPs and histone-complexed

DNA [30, 31]. Immune activation can aggravate

tissue damage through mechanisms including pro-

teolytic degradation and oxidative stress, thus

amplifying haemostatic activation.

Pathophysiology
Current available evidence suggests that ATC is due to

massive stimulation of thrombin generation, fibrinogen

and platelet consumption, and fibrinolysis by damaged

tissues. Tissue damage exposes tissue factor (TF),

which is present on all cells within the body that are

not normally in contact with the blood, and also the

sub-endothelial matrix. Tissue factor drives localised

thrombin and fibrin generation. Collagen within the

sub-endothelial matrix binds to platelet glycoprotein

VI and vWF to glycoprotein Ib, causing platelet activa-

tion. Activated platelets adhere to damaged tissues and

serve as catalysts for amplification of thrombin genera-

tion. These processes are reflected in the findings of

observational clinical studies that show reduced clot-

ting factor and physiological anticoagulant levels [21–

23], high thrombin generating capacity [3, 4, 21, 24–

26] and reduced platelet counts [27, 28] Overall, these

data indicate a consumptive coagulopathy. The most

depleted coagulation factors are fibrinogen and factor

V [22, 28], which are likely consumed in part by acti-

vated Protein C or free plasmin [29, 30], although the

relative importance of these proteases in reducing fac-

tor levels remains unknown.

Thrombin is the key effector molecule in haemo-

stasis; its generation not only converts fibrinogen to

fibrin but, like a cytokine, it also activates platelets,

leucocytes and endothelium. Thrombin is also a major

stimulator of endothelial t-PA secretion, an effect pre-

viously known as secondary fibrinolysis (as fibrinolytic

activation is secondary to coagulation activation).

Stimulation of t-PA release from the endothelium by
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other factors such as hypoxia, epinephrine and vaso-

pressin, is known as primary fibrinolysis. High t-PA

levels have been reported in coagulopathic trauma

patients [4, 26]. In addition, when bound to the endo-

thelial receptor, thrombomodulin, thrombin activates

Protein C.

It has been proposed that activated protein C

(aPC) is a major effector of ATC through cleavage of

factors Va and VIIIa. In addition, by binding PAI-1

and de-repressing t-PA, it may activate fibrinolysis [3,

5, 29]. This mechanism is plausible but problematic

due to the kinetics of the reactions. Platelets and

plasma Factor Va are resistant to aPC cleavage at con-

centrations of aPC seen in ATC or even therapeutic

use of recombinant human aPC in sepsis [31]. As a

normal platelet count of 200 9 109 l�1 overcame aPC

anticoagulant effects even at very high concentrations

of aPC, and there was no detectable effect on fibrinoly-

sis with or without platelets [31], it is difficult to envis-

age how aPC could drive the phenotype described as

ATC. Furthermore, though factor V is depleted and

PC converted to aPC in ATC, it has been amply dem-

onstrated that thrombin generation potential is dra-

matically elevated in trauma patients; this is surely

inconsistent with the notion that aPC is inhibiting

thrombin generation by inactivating factor V [32].

Also, it must be noted that PAI-1 is a potent inhibitor

of aPC in the presence of vitronectin [33]. It is unli-

kely that inactivation of aPC by vitronectin/PAI-1

would lead to PAI-1 depletion and acceleration of

fibrinolysis, as PAI-1 circulates at about ten times

higher levels than aPC [34, 35]. It seems more likely

that the enormously increased release of t-PA due to

epinephrine, vasopressin and thrombin signalling

drives the fibrinolytic phenotype of ATC.

The CRASH-2 trial underscored the central role of

fibrinolysis in ATC by demonstrating a one-third

reduction in death due to haemorrhage in trauma

patients given tranexamic acid (TXA), which inhibits

activation of plasminogen to plasmin [36, 37]. Other

clinical studies have reported that fibrinolytic activa-

tion is correlated with transfusions [38] and mortality

[38–42]. The plasmin–antiplasmin complex (PAP) is

perhaps the most sensitive indicator of fibrinolytic

activation, and its levels are increased in approximately

60% of trauma patients [43]. Plasmin activation and

generation of fibrin degradation products such as D-

dimers [3, 4, 39, 44–46] are characteristic of bleeding

trauma patients. Furthermore, free plasmin can break

down coagulation factors, and the extent of this effect

has not been fully evaluated in traumatic coagulopathy

[47].

The pathophysiology of ATC evolves after the

immediate haemostatic effects triggered by tissue

injury. Endothelial cell activation, stimulated by

thrombin and various cytokines, as well as hypoxia

and hypoperfusion [48], generates a prothrombotic

environment. Hypoperfusion plays a critical role in the

pathogenesis of ATC as demonstrated in numerous

clinical studies [3, 6, 42–51], animal models [6, 50]

and in vitro experiments [22, 51]. These data indicate

that as shock severity increases, the PT and INR rise

[4, 5, 7, 52] and coagulation factor levels fall [6, 48].

The most compelling of these studies, that included

3646 patients, demonstrated that ATC (INR > 1.2)

occurred only when significant hypoperfusion (base

deficit > 6 mmol.l�1) was combined with severe injury

(Injury severity score > 15) [6].

As ATC evolves over time, the prothrombotic

effects of endothelial cell activation eventually predom-

inate, particularly if hypoxia and acidosis are not alle-

viated. Many factors contribute, but release of

phosphatidylserine positive microvesicles from the

endothelium exacerbates the prothrombotic environ-

ment [53]. A net production of PAI-1 over t-PA fur-

ther leads to shutdown of fibrinolysis [4, 25, 45]. This

may explain why antifibrinolytic treatment at this stage

may worsen outcome [40].

Platelets form the scaffold of clots during primary

haemostasis, and serve as the catalysts of coagulation in

the current cell-based model of coagulation. Platelets are

relatively unresponsive to collagen, ADP and arachi-

donic acid after trauma [54, 55]. The pathophysiology

underlying this dysfunction, which remains obscure,

probably explains improved outcomes associated with

platelet transfusion despite adequate platelet counts [56,

57]. Lower platelet counts on hospital admission predict

trauma mortality, even when within the normal range

[58, 59]. Furthermore, outcomes may be determined by

the quality of transfused platelets [60].

Cellular microvesicles also contribute to normal

haemostasis. Tissue factor initiates clot formation
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when P-selectin glycoprotein ligand 1 (PSGL-1)/TF-

bearing microvesicles from monocytes interact with P-

selectin on platelets attached to injured tissue [61].

This procoagulant microvesicle production increases in

trauma [62] and accelerates prothrombotic change

[63].

In some ways, the initial changes of ATC are simi-

lar to DIC [40, 64]. However, in most trauma patients,

there is no evidence of inappropriate disseminated clot

formation on histological examination [65], so early

ATC is not DIC.

The importance of rapidly identifying
coagulopathy
Severely injured patients are more likely to suffer from

haemorrhagic shock, require massive transfusions, and

are at high risk of death due to bleeding. Acute trau-

matic coagulopathy is the key pathophysiological

derangement, driven by tissue damage, which results

in TF exposure, shock and hypoxia, and must be miti-

gated to successfully resuscitate the patient [66, 67].

Predicting coagulopathy
Scoring systems have been developed for adult and

paediatric trauma populations that predict which

patients will develop severe haemorrhage and require

massive resuscitation. Algorithms based on these

scores shift clinical management from a reactive to a

proactive stance [66–71]. Unfortunately, none of these

scoring systems identify all patients at risk of ATC

and death due to bleeding. Therefore, it should be

assumed that any patient considered at risk of exsan-

guination is at risk of ATC and death [70].

Current methods for ATC diagnosis and
their pitfalls
Standard coagulation tests
These include PT-based tests (PT, INR), aPTT and

Clauss fibrinogen. The PT/INR is considered an ade-

quate screen for multiple coagulation factor deficien-

cies, and was thus adopted as a marker of ATC [28].

Every laboratory can provide PT, aPTT and fibrinogen

results, and they are useful in guiding transfusion and

predicting mortality [51].

Originally, these tests were designed to evaluate

clotting factor deficiencies, not acquired multiple fac-

tor-based coagulopathies, and they are not predictors

of bleeding in these circumstances [72]. Moreover,

they do not take into consideration the contribution of

platelets to haemostasis, the role of fibrinolysis, throm-

bin generation, or the interactions between coagulation

enzymes and cellular phospholipid surfaces. Further-

more, these are not point-of-care assays and turn-

around times often negate the value of the results [5].

Therefore, plasma-based coagulation assays are rarely

helpful in the immediate management of ATC, but

they do have an important role in monitoring ongoing

bleeding, to guide the use of appropriate blood prod-

ucts.

Thromboelastography and thromboelastometry
Increasingly, TEG� (Hemonetics Corporation, Brain-

tree, MA, USA) and ROTEM� (TEM International

GmbH, Munich, Germany) are being used to guide

trauma resuscitation [38, 41]. Minimally injured

patients tend to have normal profiles, whereas moder-

ately or severely injured patients typically exhibit TEG

changes [38, 46]. Thromboelastograpy and ROTEM

can play a role in the diagnosis of severe fibrinolysis,

but are insensitive to more limited fibrinolytic activity

[73]. Marked fibrinolysis detected by TEG or ROTEM

is associated with a poor prognosis. Sch€ochl et al. [41]

and others have defined hyperfibrinolysis as a reduc-

tion in maximal amplitude (MA) of 15% on ROTEM

testing. However, this definition conflicts with the clas-

sic understanding of hyperfibrinolysis, which describes

a kinetic reversal whereby fibrinolytic activity is greater

than fibrin formation, and clot strength is compro-

mised [74]. Thrombolastographic hyperfibrinolysis

should perhaps be used to describe increased lysis only

in relation to TEG visco-elastic measurements.

There is no commonly accepted visco-elastic defi-

nition of ATC, although the candidates include:

increases in clotting time and clot formation time; and

loss of clot amplitude (CA) and maximal clot ampli-

tude [40, 50, 75]. One group used ROTEM to define

an EXTEM CA5 (CA at 5 min) value of < 36 mm as

diagnostic of ATC [5]. Another group suggests that

TEG or ROTEM A10 correlates well with platelet

count and fibrinogen level and predicts transfusion

requirements. Advocates for visco-elastic monitoring

suggest that the capacity to distinguish specific haemo-
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static abnormalities provides a means of individualis-

ing coagulation and transfusion management [37, 41].

However, there are no ROTEM and TEG algorithms

validated by randomised trials. Another important lim-

itation is that, like other standard coagulation tests,

TEG and ROTEM are typically performed at 37 °C,

and results underestimate coagulation disturbances in

hypothermic patients.

The evolving importance of ATC in
trauma resuscitation
The recognition of ATC has driven dramatic change

in trauma management. Until the military experience

in Iraq and Afghanistan was published over the last

10 years, resuscitation was started with red cell con-

centrates, and scant attention was paid to coagulopathy

until much later. Retrospective data from the USA and

UK military and leading civilian institutions described

improved outcomes in those treated with fresh whole

blood [76–78] or fresh frozen plasma (FFP), cryopre-

cipitate and platelets in combination with red cells and

tranexamic acid, with extremely limited use of colloid

or crystalloid infusions [76–82], a practice known as

haemostatic resuscitation [83]. It is possible that cur-

rent transfusion strategies can be optimised to further

improve survival after ATC [84]; the results of rando-

mised controlled trials will guide further developments

[85]. In North America, the challenge of managing

ATC has generated renewed interest in whole blood

for trauma resuscitation [86–89]. On the other hand,

in some European countries, fibrinogen and other fac-

tor concentrates have replaced FFP in the management

of ATC [90]. The evolution of divergent clinical prac-

tices underscores the need for a better understanding

of the pathophysiology of ATC and for more clinical

research looking at the full risks and benefits of

improved haemostatic management. For example,

there are no studies looking at the effect of modern

treatment on the rate of post-trauma venous thrombo-

embolism, which is a major cause of morbidity and

mortality. It is recognised that the use of prothrombin

complex concentrate may induce later prothrombotic

changes [91], and potentially this may affect the rate

of posttrauma thromboembolism.

Conclusion
Over the last decade, the incidence and implications of

ATC have become clearer to the trauma community.

Further clinical studies are required to increase our

understanding of the pathophysiology of traumatic co-

agulopathy and inform the direction of studies to

improve haemostatic management and outcomes.
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